
Oobleck
Resilient Distributed Training of Large Models
Using Pipeline Templates

Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowdhury

2

Large Model Training

Models are Becoming Larger

0

800

1600

2400

3200

2018 2019 2019 2020 2021 2021 2022

M
em

or
y

fo
r

m
od

el
 p

ar
am

s
(G

B)

BERT
0.7GB

GPT-2
3GB

Megatron-LM
17GB

Turing-NLG
34GB

GPT-3
350GB

Megatron-
Turing NLG

1,060GB

Switch Transformer
3,120GB

NVIDIA H100: 80GB
Intel Gaudi2: 96GB
AMD MI300: 128GB

Assumes 2 bytes per parameter.

Large Model Training

Hybrid Parallelism is Becoming a Norm

1 2 3 4 5 6 7 8 9 10 11 12

Stage 1 Stage 2 Stage 3 Stage 4

1 2 3 4 5 6 7 8 9 10 11 12

Stage 1 Stage 2 Stage 3

1 2 3 4 5 6 7 8 9 10 11 12

Stage 1 Stage 2

A large model
with 12 layers 1 2 3 4 5 6 7 8 9 10 11 12

Shard the model and distribute chunks to multiple devices (model parallelism)

Deploy more replicas
to parallelize training

(data parallelism)

Pipeline Replica 1

Pipeline Replica 2

Pipeline Replica 3

3

4

Large Model Training

Failures Getting Noticeable

More GPUs are used

Higher probability
of GPU failing

We use more GPUs,
each of which can fail

independently

Higher cost
of GPU failing

The entire training must pause,
wasting all working GPUs
due to synchronization

Reports about the impact of failures in training large models
• Meta AI training OPT: “Estimated 100+ host restarts due to hardware failures over the course of 2 months.” [1]

• LAION training CLIP models: “Hardware issue is an annoying problem as if one GPU has an issue, all GPUs get stuck.” [2]

[1] Susan Zhang et al. “OPT: Open Pre-trained Transformer Language Models”. Arxiv’22
[2] Romain Beaumont, “Large Scale OpenCLIP: L/14, H/14 and G/14 Trained on LAION-2B”. https://laion.ai/blog/large-openclip/

5

Resilient Training Requirements

Guaranteed
fault tolerance

High
throughput

Fast
recovery

Varuna [2]Bamboo [1]

[1] John Thorpe et al. “Bamboo: Making Preemptible Instances Resilient for Affordable Training of Large DNNs”. NSDI’23
[2] Sanjith Athlur et al. “Varuna: Scalable, Low-cost Training of Massive Deep Learning Models”. EuroSys’22

Oobleck (ours)

No guarantee for ≥ 2
simultanoues failures

Dynamic reconfiguration
without restart

Full restart from
the last checkpoint

No formal
fault tolerance guarantee

Getting slower when
recovery overheads are higher

High computational
overheads

6

•
§ Hybrid parallelism has multiple replicas of a model

§ Utilize inherent redundancy in hybrid parallel execution

• Introducing pipeline template

§ Oobleck’s core idea to achieve both high throughput and fast recovery simultanouesly

§ A specification of pipeline execution

Oobleck: Overview
Guaranteed fault tolerance

high throughput fast recovery

7

• Utilize inherent redundancy in hybrid parallel execution

Fault Tolerance Guarantee

1 2 3 4 5 6 7 8 9 10 11 12

Stage 1 Stage 2 Stage 3 Stage 4

1 2 3 4 9 10 11 12

Stage 1 Stage 2 Stage 3

1 2 3 4 5 6

5 6 7 8

7 8 9 10 11 12

Stage 1 Stage 2

Pipeline Replica 1

Pipeline Replica 2

Pipeline Replica 3 5 6 7 8 97 8

• Each template is a pre-generated single pipeline execution specification for
specific number of nodes

8

Pipeline Template

1 2 3 4 5 6

GPUs in 3 nodes

A model7 8 9 10 11 12

GPU

GPU
Node

GPU

GPU
Node

GPU

GPU
Node

• Each template is a pre-generated single pipeline execution specification for
specific number of nodes

9

Pipeline Template

GPU

GPU

GPU

GPU

1 2 3 4 5 6 7 8 9 10 11 12

Stage 1 Stage 2 Stage 4

A Pipeline Template for 3 Nodes

GPU

GPU

Stage 3

• Parallel execution plan is configured as a linear combination of templates

• Use all nodes & reduce search space but provide high throughput

10

Pipeline Template

Parallel Execution Configuration

Pipeline Template
for 2 Nodes

Pipeline Template
for k Nodes

Pipeline Template
for 4 Nodes

...

Pipeline Template
for 3 Nodes

An example of parallel execution plan with 13 nodes

1x pipeline from the pipeline template for 2 nodes
1x pipeline from the pipeline template for 3 nodes
2x pipelines from the pipeline template for 4 nodes

...

11

• Quickly reinstantiate a new pipeline from a template when failures happen

Pipeline Template

Failure Recovery

A pipeline instantiated from the template for 4 nodes

GPU GPU GPU

GPU GPU GPU

GPU

GPU

Stage 1

1 2 3

Stage 2

4 5 6

Stage 3

7 8 9

Stage 4

10 11 12

Pipeline Template
for 2 Nodes

Pipeline Template
for k Nodes

Pipeline Template
for 4 Nodes

...

Pipeline Template
for 3 Nodes

...

12

• Quickly reinstantiate a new pipeline from a template when failures happen

Pipeline Template

Failure Recovery

A node fails and GPUs are lost

GPU GPU GPU

GPU GPU GPU

Stage 1

1 2 3

Stage 3

7 8 9

Stage 4

10 11 12

Pipeline Template
for 2 Nodes

Pipeline Template
for k Nodes

Pipeline Template
for 4 Nodes

... ...

Pipeline Template
for 3 Nodes

13

• Quickly reinstantiate a new pipeline from a template when failures happen

Pipeline Template

Failure Recovery

Instantiate a pipeline template for 3 nodes

n Layers that GPUs have

n Layers that GPUs don’t have
Stage 3

7 8

GPU

GPU

GPU

Stage 1

1 2 3 4

GPU

5 6

Stage 2

GPU

GPU

Stage 4

10 11 129

Pipeline Template
for 2 Nodes

Pipeline Template
for k Nodes

Pipeline Template
for 4 Nodes

...

Pipeline Template
for 3 Nodes

...

• Quickly reinstantiate a new pipeline from a template when failures happen

14

Pipeline Template

Failure Recovery

Copy missing layers from replica(s)

Another pipeline replica
GPU GPU GPU
GPU GPU GPU

GPU
GPU

Stage 1 Stage 2 Stage 3 Stage 4
1 2 3 4 5 6 7 8 9 101112

Stage 3

7 8

GPU

GPU

GPU

Stage 1

1 2 3 4

GPU

5 6

Stage 2

GPU

GPU

Stage 4

10 11 1294 5 6 9
n Layers that GPUs have

n Layers that GPUs don’t have

Pipeline Template
for 2 Nodes

Pipeline Template
for k Nodes

Pipeline Template
for 4 Nodes

...

Pipeline Template
for 3 Nodes

...

15

Failure Recovery

Reinstantiation vs Just Copying Layers
GPU GPU GPU

GPU GPU GPU

Stage 1

1 2 3

Stage 2

7 8 9

Stage 3

10 11 124 5 6

Copying lost layers
to adjecent nodes

without reinstantiation

Pipeline reinstantiation

vs

Stage 3

7 8

GPU

GPU

GPU

Stage 1

1 2 3 4

GPU

5 6

Stage 2

GPU

GPU

Stage 4

10 11 1294 5 6 9

n Layers that GPUs have

n Layers that are copied

1. Might not fit
in memory

2. Imbalanced stage execution
slows down the pipeline

16

Issues in Using Pipeline Templates

à Node Specification

1. Determining # pipeline templates and # nodes for each template

à Pipeline Merge

3. What if there is no feasible pipeline template to be instantiated?

à Pipeline Instantiation

2. Determining number of pipelines to be instantiated from each template

17

• No need to have a pipeline template for every possible # nodes

Issues in Using Pipeline Templates

1. Node Specification

Train a model (required to have ≥ 2 nodes to train) with 13 nodes
How many pipeline templates do we need?

Pipeline Template
for 2 Nodes

Pipeline Template
for 3 Nodes

Pipeline Template
for 4 Nodes

Pipeline Template
for 5 Nodes

Pipeline Template
for 6 Nodes

Pipeline Template
for 7 Nodes

Pipeline Template
for 8 Nodes

Pipeline Template
for 9 Nodes

Pipeline Template
for 10 Nodes

Pipeline Template
for 11 Nodes

Pipeline Template
for 12 Nodes

Pipeline Template
for 13 Nodes

18

• Finding # templates & # nodes per template formulated as a Frobenius problem

• Provable guarantee that a linear combination of the set of pipeline templates
use all nodes even after failures

Issues in Using Pipeline Templates

1. Node Specification

Pipeline Template A
(2 nodes)

Pipeline Template B
(3 nodes)

Pipeline Template C
(4 nodes)

3 Heterogeneous Pipeline Templates Any 2 ≤ N ≤ 13 can be represented
with the set of pipeline templates

13 nodes

12 nodes

11 nodes

19

• Execution engine instantiates pipelines from pipeline templates
that use all nodes

Issues in Using Pipeline Templates

2. Pipeline Instantiation

x1
x1

x2
13 nodes Set of pipeline templates

Pipeline Template A
(2 nodes)

Pipeline Template B
(3 nodes)

Pipeline Template C
(4 nodes)

The plan is not unique

20

Issues in Using Pipeline Templates

2. Pipeline Instantiation
• Use dynamic programming to enumerate all possible instantiation plans
• Estimate iteration time of every plans and pick the best one

instantiations per pipeline template Total # nodes used

x1 x1 x2Plan 1 13

x0 x3 x1Plan 2 13

x5 x1 x0Plan 3 13

more options

21

• Need to know batch size per pipeline to estimate iteration time
• Formulate finding batch distribution that minimizes overall iteration time as

an integer optimization problem

2. Pipeline Instantiation

Batch Distribution

Global batch
512

157

79

Total batch 512

512

Pipeline Templates# Instantiations

x1

119 x1

x2

Minibatch

“Find batch size

of each pipeline”

Plan 1

22

• Estimate iteration time of every plans and pick the best one

2. Pipeline Instantiation

Batch Distribution

157

79

Pipeline Templates# Instantiations

x1

119 x1

x2

Minibatch

Plan 2

158

N/A x0

118 x3

x1

Plan 3

N/A

79 x5

117 x1

x0

more
options

...

Plan 1

23

Issues in Using Pipeline Templates

3. Pipeline Merge
• Reinstantiate a new pipeline from another pipeline template

when failures happen

13 à 11 nodes (2 nodes failed)

Pipeline Template
(2 nodes)

Pipeline Template
(3 nodes)

Pipeline Template
(4 nodes)

• When no feasible pipeline template: merge pipelines

• Provable guarantee that Oobleck always has a template for merged pipeline

Merge pipelines
Total 3 nodes

24

Issues in Using Pipeline Templates

3. Pipeline Merge

8 à 7 nodes (1 node failed)

Pipeline Template
(2 nodes)

Pipeline Template
(3 nodes)

Pipeline Template
(4 nodes)

25

Oobleck Architecture Workflow

1. Generate pipeline templates

2. Instantiate pipelines from the
pipeline templates

3. Pipeline reinstantiation when
failures detected

26

• Setup
§ Compare Bamboo, Varuna, and Oobleck

§ 30 NVIDIA A40 GPUs with 200Gbps Infiniband

§ Various size of models from BERT-Large (345M) to GPT-3 6.7b (6.7B)

• Questions
§ How much is Oobleck better than SOTAs (Bamboo and Varuna)?

§ Why Oobleck is better?

Evaluation

27

Small Model Throughput

0

100

200

300

400

Throughput
(samples/second)

Bamboo

Varuna

Oobleck

Throughput

Average

BERT-Large

Numbers in Bamboo EC2 p3 spot instance traces.

0 6 12
Time (hours)

28

Large Model Throughput

0 6 12
Time (hours)

0

2

4

6

Numbers in Bamboo EC2 p3 spot instance traces.

Throughput
(samples/second)

Failed to train
due to its design

(OoM)

Failed to train
due to high restart

overheads

Bamboo

Varuna

Oobleck

Throughput

Average

GPT-3 6.7b

29

Throughput vs Bamboo

Time
Occupation

(%)

Low Failure Frequency

0

50

100

Oobleck

100%

Bamboo

20%
0

50

100

Time
Occupation

(%)

High Failure Frequency

Oobleck

96%

Bamboo

15%

Model: BERT-Large

Effective Time

80% Computation overheads
for redundancy

61%

Numbers in failiure-controlled environment.

30

Throughput vs Varuna

GPT-3 6.7b

Time
Occupation (%)

0

50

100

OobleckVaruna

94% 100%

Time
Occupation (%)

0

50

100

OobleckVaruna

82%
99%

BERT-Large

Effective Time

Low
Failure

Frequency

Numbers in failiure-controlled environment.

31

Throughput vs Varuna
GPT-3 6.7b

Time
Occupation (%)

0

50

100

OobleckVaruna

94% 100%

Time
Occupation (%)

0

50

100

OobleckVaruna

82%
99%

BERT-Large

Effective Time

Time
Occupation (%)

0

50

100

OobleckVaruna

Time
Occupation (%)

0

50

100

OobleckVaruna

Low
Failure

Frequency

High
Failure

Frequency
6%

76%
66%

96%

-30% -90%

Numbers in failiure-controlled environment.

32

Throughput vs Varuna

Effective Time

0

50

100

Time
Occupation (%)

GPT-3 6.7b + High Failure Frequency

6%

Varuna Oobleck

Reconfiguration

67%

GPT-3 6.7b vs GPT-3 175b?
30 GPUs vs 1024 GPUs?

21%

Fallbacks

76%

Numbers in failiure-controlled environment.

33

Oobleck
https://github.com/SymbioticLab/Oobleck

Fault tolerance guarantee
• Utilize model replicas as redundancy

High throughput
• Utilize all available resources
• Avoid stragglers in heterogeneous pipeline execution

Fast recovery from failures
• Dynamic reconfiguration without restart
• Reuse pre-generated pipeline templates

insujang@umich.edu

