
Energy-Aware Real-Time Scheduling Algorithm
on ARM big.LITTLE HMP Architecture

Insu Jang and Jaehun Roh
Department of Computer Science and Engineering, Sungkyunkwan University, Republic of Korea

bluewave8375@naver.com, shwogjs3@naver.com

Abstract—As many systems including running in real-time
environment are embedded devices using ARM architecture based
application processors, architecture considering algorithms for
managing resources are very important. The cutting edge
technology of the ARM architecture is big.LITTLE heterogeneous
multicore processing (HMP). However, there is few studies about
real-time scheduling based on this architecture. To solve this
problem, we propose a new workload assignment algorithm called
VFS-Hetero-Split by extending the existing Hetero-Split with
more consideration on properties of the big.LITTLE HMP
architecture, such as up-threshold, dynamic voltage frequency
scaling (DVFS), and so on. It can assign workloads onto big and
LITTLE clusters with the same time complexity of the existing
Hetero-Split algorithm but total required power consumption is
less than that of Hetero-Split. With VFS-Hetero-Split, running
generated workload assignment with each target frequency can
successfully reduce power consumption up to 48% without losing
any feasibility compared to that running with the maximum
frequency.

Keywords—big.LITTLE; heterogeneous multicore processing;
real-time scheduling; dynamic voltage frequency scaling

I. INTRODUCTION
In these days, many embedded systems using ARM

architecture based application processors for power efficiency
are released. The earlier version of ARM architecture is much
power-efficient, however, this power efficiency is being
decreased because of growth of performance demand. Therefore,
ARM introduced a big.LITTLE architecture to satisfy
performance demand while keeping power efficiency. At first,
all big.LITTLE runs as cluster migration. As we cannot use both
cluster, it is less efficient and less flexible. To solve this problem,
ARM introduced a new algorithm of big.LITTLE, called
heterogeneous multicore processing (HMP). Under HMP
scheduling algorithm, all cores can run simultaneously, so it
became very flexible. To determine whether this task should be
run on the big cluster or on the LITTLE cluster, up-threshold and
down-threshold is newly denoted considering power efficiency
based on the current demand. During dynamic voltage frequency
scaling (DVFS), the target frequency of the task is increasing
and finally the task is migrated onto the big cluster when the
frequency is larger than up-threshold.

Like this, we have to consider different characteristics
between big and LITTLE cluster, so scheduling on a
heterogeneous multicore architecture is challenging than
scheduling on identical multicore architecture. Especially, HMP
architecture is the cutting-edge technology of heterogeneous

multicore architecture, there are few studies about scheduling
algorithm on HMP architecture even demand is growing.
Therefore, we introduce a new real-time scheduling algorithm
running on ARM big.LITTLE architecture. We extend one of
fully-migrative heterogeneous multicore real-time scheduling
algorithms, Hetero-Split, to VFS-Hetero-Split considering
characteristics of HMP architecture such as DVFS, workload
decomposition, threshold, and so on [1]. Satisfying properties of
Hetero-Split, a workload assignment generated by VFS-Hetero-
Split can be used with Hetero-Wrap algorithm, the first optimal
two-type heterogeneous multicore scheduling algorithm.

The remaining paper consists of the following sections:
section II introduces background knowledge about ARM
big.LITTLE model, power model of this architecture, DVFS,
workload decomposition, and our system model. In section III,
we introduce our algorithm VFS-Hetero-Split. We adopted
similar approach that Hetero-Split used: list feasibility
conditions and consider one by one. To make a task set satisfy
these conditions, we consider workload decomposition, DVFS,
task migration, and so on. In section IV, we perform experiment
how power consumption is reduced compared to that when
processor is running with its maximum frequency using the
simulator that we implemented.

II. BACKGROUNDS

A. ARM big.LITTLE model
Heterogeneity means that it is composed of different types

of cores. One of the famous heterogeneous architectures is
big.LITTLE architecture suggested by ARM holdings, one of
the most famous application processor design company.

As several years ago, architectures designed by ARM did not
require high power. However, as performance of chips is
increasing, required power consumption is also increasing,
which is too burden to handle with the current battery
technology. To solve this problem, ARM implemented a new
concept of heterogeneous multicore architecture, named
big.LITTLE. Although big and LITTLE cores share the same
Instruction-Set-Architecture (ISA), big cores and LITTLE cores
have many differences such as a predictor and issue bandwidth
between them. It means that they have different power efficiency
and performance characteristics. Big cores have a complex
architecture but have good performance and high power
consumption, while LITTLE cores are good for power
efficiency due to their simple architecture. Therefore, if a task is
high-demand, it is migrated to a big core to meet their demand
or runs in a LITTLE core if not. Table 1 shows differences of

A53 architecture used as LITTLE cores and A57 architecture
used as big cores [4].

TABLE I. SPECIFICATIONS OF THE A57 AND A53 ARCHITECTURES

 A53 architecture A57 architecture
Decode 2-wide 3-wide
Pipeline depth 8 15
Instruction order In-order Out-of-order

branch prediction Conditional & indirect
branch prediction two-level

Execution ports 2 8
L1 cache (KiB) 8 to 64(I) + 8 to 64(D) 48(I) + 32(D)
L2 cache (KiB) 128 to 2048 512 to 2048
DMIPS/MHz 2.3 4.1 to 4.76
big.LITTLE role LITTLE Big

When the big.LITTLE concept is released at first,
big.LITTLE architectures are executed as a cluster migration
which uses only either a big cluster or a LITTLE cluster at the
same time. In normal situation, only the LITTLE cluster is used
while all tasks in the LITTLE cluster are migrated and run in the
big cluster when they are being heavy. It is simple to implement
but less efficient and flexible because we can only use one
cluster at a time. To solve this problem and to increase efficiency,
Heterogeneous Multicore Processing (HMP), also called as
Global Task Scheduling (GTS), is introduced [2, 3]. Since all
physical cores can be controlled simultaneously, power
management can be done more carefully and efficiently.

Nowadays many chip vendors such as Samsung and
Qualcomm are making ARM big.LITTLE processors. In case of
Samsung Exynos 7420, it is composed of four A53 LITTLE
cores and four A57 big cores and acts as HMP. Figure 1 and
Figure 2 are the number of cores – frequency – power
consumption curve which are measured by Andrei [5].

Fig. 1. The power curve of A57 big cores in Samsung Exynos 7420

Figure 1 is the graph about the power consumption of A57
big cores in Samsung Exynos 7420 processor. The power curve
has different shape from A15 architecture based big cores in
Samsung Exynos 5410 [6], because Samsung Exynos 7420 runs
as heterogeneous multicore processing, not cluster migration
processing. As cores can be controlled individually, the total
power consumption is proportional to the number of cores.

Fig. 2. The power curve of A53 LITTLE cores in Samsung Exynos 7420

Figure 2 is the graph about power consumption of LITTLE
cores. It has a similar shape with what of big cores, while the
LITTLE cores spend less power than big cores at the same
frequency.

B. Power and energy model
To assign tasks in terms of power efficiency, we have to

model CPU power consumptions. We applied the model that
Aaron used and distinguished the state into active, idle, and
offline [7]. Active state is a state when CPU is on and works
some task. Idle state is a state when CPU is on, but they do not
have some task to do. Offline state means that the core is in sleep
state so cannot do any works before going into idle state.
Equation 1 is the represents total power consumption of CPU.

 𝑃 = 𝑃#$%&'(+ 𝑛(𝑃,-.-/% + 𝑃01$.2/%) (1)

where 𝑛 is the number of cores that are not in offline state.

𝑃#$%&'(means the power consumption which is independent
with the state like idle, active. Even every cores are in off state,
the amount of power 𝑃#$%&'(should be consumed. 𝑃,-.-/%
means the power consumption of a CPU core when it is on but
idle. This is independent from the workload but affected by the
voltage of the core. 𝑃01$.2/% is the power consumption when
the core is online and handles some tasks. The following
equations represent 𝑃,-.-/% and 𝑃01$.2/%.

 𝑃,-.-/% = 𝐶,-.-/% ∗ 𝑉 (2)

 𝑃01$.2/% = 𝐶(77 ∗ 𝑓 ∗ 𝑉9 (3)

where 𝐶,-.-/% is a constant depending on the core type, 𝐶(77 is
an effective capacitance, 𝑓 is the core frequency, and 𝑉 is the
core voltage.

Let time to complete an i-th task be 𝑇/ . Then total energy
consumption 𝐸/ to complete an i-th task should be:

 𝐸/ = 𝑃/ ∗ 𝑇/ (4)

C. DVFS and workload decomposition
Dynamic Voltage Frequency Scaling (DVFS) is a technique

used in CPUs to reduce power consumption. Especially, as
Aaron said, most of devices are embedded devices and have
limited power budget so energy efficiency is one of primary
design criterions.

As explained in the power model section, an additional
required power consumption to handle a task when the core is in
idle state can be expressed as [8]:

 𝑃.00 = 𝐶(77𝑓𝑉9 (5)

According to the DVFS table [9], the core voltage is
asymptotically proportional to the core frequency. Therefore, we
can re-express the above equation as:

 𝑃.00 ≅ 𝐶(77𝑓= (6)

We simply assumed that the frequency is the number of
instructions that the core can handle in a time unit and the
workload of the task is the number of instructions to be
completed in our system model. Thus, the execution time can be
expressed as:

 𝑇/ =
>?
7

 (7)

where 𝑤/ is workload of the task 𝜏/ . Then, total power
consumption to process a task can be expressed as:

 𝐸/ = 𝑃.00 ∗ 𝑇/ ∝ 𝑓9 (8)

which means that the required amount of energy proportional to
square of the frequency. Therefore, rather than finishing tasks
fast with high frequency, it is better to run tasks with a frequency
as low as possible. In real-time environment, every tasks have
its own deadline. Hence, we define the target frequency that
minimizes power consumption:

 𝑓-.'C(-,/ =
>?
E?
= >?

F?
= >?

G
 (9)

Note that we increased the execution time of i-th task as long
as possible, to its deadline. As all tasks have its own unique
target frequency, cores should adjust their running frequency
and appropriate voltage whenever switching cores, which is why
it is called DVFS.

However, even we set frequency double, the execution time
will not be half, according to Amdahl’s law [10]. We must
consider this characteristic so decompose workload of i-th task

into two parts: on-cpu workload 𝑊/
&$ and off-cpu workload

𝑊/
&77 [11]. Then we can view the execution time of i-th task as:

 𝑇/ = 𝑇/&$ + 𝑇/
&77 = >?

IJ

7
+

>?
IKK

'
 (10)

where 𝑟 is the speed of another devices except for CPU and
𝑇/
&77 is the execution time to handle off-cpu workload 𝑊/

&77
and constant regardless of the cpu frequency 𝑓. Then, the target
frequency of i-th task can be recalculated as:

 𝑓-.'C(-,/ =
>?
IJ

F?ME?
IKK =

>?
IJ

GME?
IKK (11)

Note that the new target frequency is less than or equal to the

old target frequency, i.e.
𝑊𝑖
𝑜𝑛

𝐷−𝑇𝑖
𝑜𝑓𝑓 ≤

𝑊𝑖

𝐷
, which means that we can

set lower frequency and reduce more power consumption when
considering workload decomposition.

Proof: With workload decomposition, 𝐷 = 𝑇/ = 𝑇/&$ +
𝑇/
&77 and 𝑊/ = 𝑊/

&$ + 𝑊/
&77 . Then the inequality can be

expressed as 𝑊/
&$ 𝑇/&$ + 𝑇/

&77 ≤ 𝑊/
&$ + 𝑊/

&77 𝑇/&$, so
𝑇/&$𝑇/

&77 𝑓 − 𝑟 ≥ 0. According to memory hierarchy [12], the
fastest component in computers is a processor. Therefore, the
inequality always holds. ◼

Following the definition of big.LITTLE execution ratio 𝑟/,
big cores are 𝑟/ times faster than LITTLE cores for i-th task, i.e.
𝑇/
U/C,&$ = V

'?
𝑇/
WXEEWY,&$. Hence, the target frequency for big core

and LITTLE core of i-th task have the following relationship:

 𝑓-.'C(-,/
U/C = V

'?
𝑓-.'C(-,/WXEEWY (12)

D. System model
We consider an ARM big.LITTLE HMP architecture based

cluster 𝜋 is organized with a Cortex-A57 big cluster 𝜋U/C with
𝑛U/C number of big cores and a Cortex-A53 LITTLE cluster
𝜋WXEEWY with 𝑛WXEEWY number of LITTLE cores. The range of
frequency depends on the type of the cluster : a big core can set
its frequency 𝑓U/C between (𝑓2/$

U/C, 𝑓2.[
U/C) and so does a LITTLE

core between (𝑓2/$WXEEWY, 𝑓2.[WXEEWY) . Although some instructions
require more than one number of cycles to complete, we simply
assume that the core frequency is the number of instructions that
the core can handle in a time unit.

Each task 𝜏/ ∈ 𝜏 is a periodic task and has 4 characteristics:

• A period 𝑃/,

• The amount of workload 𝑊/ denoted by the number of
instructions in the task,

• On-cpu workload ratio 𝑟/> that represents the portion of
on-cpu workload when assuming total workload as one,

• big.LITTLE execution ratio 𝑟/E that represents the
execution ratio in a big core to a LITTLE core when
running in the same frequency.

To match our assumption about the cluster, a period 𝑃/ is
defined as the number of time unit to complete this task and the
amount of workload 𝑊/ is denoted by the number of instructions
in this task. Note that big.LITTLE execution ratio is always
larger than one because a big core is always faster than a
LITTLE core when they run with the same frequency.

Our assumptions about the tasks are all same with what
Chwa assumed. Therefore, it our algorithm can successfully
generate a workload assignment that has the same properties
with what is generated by Hetero-Split algorithm, we can use
Hetero-Fair guidelines and Hetero-Wrap algorithm as they are.

III. VFS-HETERO-SPLIT : TASK WORKLOAD ASSIGNMENT
In this section, we introduce our approach to assign task

workloads on ARM big.LITTLE architecture. Our approach is
extended from Hetero-Split and considers not only feasibility
but also energy-efficiency.

Hetero-Split algorithm approached to the problem with two
steps: feasibility conditions and per-cluster task workload
assignment algorithm. We approach to the problem with the
same method, but including an additional feasibility condition
and a revised task workload assignment algorithm for ARM
big.LITTLE considering energy efficiency.

A. Feasibility conditions
According to feasibility analysis of fully-migrative

heterogeneous multicore scheduling [13], five conditions C1-C5
must hold for a task workload assignment to be feasible. Among
these constraints, Hetero-Split aimed to find a “specific” feasible
task workload assignment by only focusing on C2 (deadline
constraint) and C3 and C4 (capacity constraint) as follows:

C2 : ∀𝜏/ ∈ 𝜏, 𝑢/V + 𝑢/9 ≤ 1,

C3 : 𝑢/V ≤ 𝑚Va?∈a ,

C4 : 𝑢/9 ≤ 𝑚9a?∈a .

where 𝑢/b is the utilization of the i-th task when running on a
type-k cluster and 𝑚b is the total capacity of the type-k cluster.

In our model, these conditions can be regarded as:

C2’ : ∀𝜏/ ∈ 𝜏, 𝑇7c7defghd,?
i?g ,/

U/C + 𝑇7c7defghd,?jklljm,/
WXEEWY + 𝑇/

&77 ≤ 𝑃/,

C3’ : 𝑢
7c7defghd,?

i?g ,/
U/C ≤ 𝑚U/Ca?∈a ,

C4’ : 𝑢7c7defghd,?jklljm,/
WXEEWY ≤ 𝑚WXEEWYa?∈a .

where the utilization can be simply calculated as:

 𝑢7,/WXEEWY =
>?
IJ,jklljm

7
∗ V

F?ME?
IKK , 𝑢7,/

U/C =
#K,?
jklljm

'?
 (13)

Note that C2 is still the deadline constraint, but expressed
with the execution time, not with utilization because of workload
decomposition.

We are now considering DVFS, so there is an another
constraint named frequency constraint. If the target frequency of
a task that satisfies the deadline of the task is larger than the
maximum frequency 𝑓2.[, it means it cannot run on that core.
Therefore, the new frequency constraint C1 is:

C1 : ∀𝜏/ ∈ 𝜏, 𝑓-.'C(-,/
U/C ≤ 𝑓2.[

U/C

Note that there is no restriction about the target frequency of
a LITTLE core because a big core is always faster than a
LITTLE core and has larger target frequency, i.e. 𝑓2.[

U/C ≥
𝑓2.[WXEEWY. The i-th task might not be feasible solely on LITTLE
cluster, but is always feasible on the whole cluster when it
satisfies C1.

B. ARM big.LITTLE workload assignment algorithm
We implement improved Hetero-Split, called VFS-Hetero-

Split. It guarantees to find a feasible workload assignment on
ARM big.LITTLE architecture satisfying new constraints C1-
C4, similar to Hetero-Split. At first, we consider the deadline
constraint, and then assign tasks into clusters with several new
definitions from HMP architecture.

1) Considering the deadline constraint
Different from the existing Hetero-Split algorithm, VFS-

Hetero-Split algorithm does not consider workload fraction at
this time. Instead, we calculate the target frequency for a big core
and a LITTLE core of each task, i.e. 𝑓-.'C(-,/

U/C and 𝑓-.'C(-,/WXEEWY , by
using equation 11 and equation 12.

If the target frequency for a big core is larger than the
maximum frequency of a big core, i.e. 𝑓-.'C(-,/

U/C > 𝑓2.[
U/C , then this

task should violate either the deadline constraint or the
frequency constraint, which means it is not feasible.

Also, if the target frequencies for either big core or LITTLE
core is less than the minimum frequencies of the corresponding
cluster, then set the target frequency with the minimum
frequency.

We calculated the target frequencies of all tasks in the task
set which satisfy their deadline constraints. Only what we have
to do is to assign these tasks onto big.LITTLE clusters
considering power consumption and capacity constraints.

2) Considering up-threshold
In HMP, there are definitions about up-threshold and down-

threshold. Up-threshold is a frequency for a LITTLE core which
is a match point between energy efficiency of the LITTLE core
and that of a big core. In opposite, down-threshold is a frequency
for a big core which is a match point between energy efficiency
of a LITTLE core and the big core [14].

Fig. 3. Energy efficiency – performance graph of Samsung Exynos 7420

Figure 3 is a performance-energy efficiency graph of
Samsung Exynos 7420 measured by Andrei. The up arrow on
the blue line is up-threshold for an A53 LITTLE core and the
down arrow on the red line is down-threshold for an A57 big
core. In existing HMP scheduling, we don’t know the actual
amount of tasks so frequency is changed dynamically
considering a current demand in each CPU clock cycle. Once the
frequency for a LITTLE core calculated from the current
demand become larger than up-threshold, it is migrated to a big
core.

Slightly different from the original use of up-threshold, we
use only up-threshold to figure out which cluster is more energy-
efficient for tasks to be run on. As VFS-Hetero-Split allocates
tasks by using Hetero-Wrap algorithm, which is one of offline
task allocation method, we don’t have to use up-threshold and
down-threshold in terms of the current demand of tasks because
we know which cluster is more energy efficient for each task
before actually assigning it. If the target frequency for a LITTLE
core of a task is larger than up-threshold, it means it is more
energy-efficient when it runs on a big core.

To assign tasks in terms of energy efficiency, we should first
calculate up-threshold for each task. As the exact calculation of
up-threshold is too complex, some factors will be ignored during
calculation. By definition of up-threshold, the following
equation holds:

 𝐸7c7op,?
WXEEWY = 𝐸

7c7defghd,?
i?g

U/C (14)

where 𝑓#q,/ is up-threshold.

By the equation 4 with workload decomposition,

 𝑃%&'(,/WXEEWY ∗ 𝑇7c7op,?
WXEEWY + 𝐸/

&77 = 𝑃%&'(,/
U/C ∗ 𝑇

7c7defghd,?
i?g

U/C + 𝐸/
&77 (15)

According to our power model, 𝑃 can be expressed as:

𝑃,-.-/%WXEEWY + 𝐶(77WXEEWY ∗ 𝑓#q,/ ∗ 𝑉#q,/9 ∗
𝑊/

&$

𝑓#q,/

 = 𝑃,-.-/%
U/C + 𝐶(77

U/C ∗ 𝑓-.'C(-,/
U/C ∗ 𝑉-.'C(-,/

U/C 9
∗ >?

IJ

7defghd,?
i?g (16)

As 𝑃,-.-/% is proportional to the core voltage and the voltage
is asymptotically proportional to the core frequency, then

𝐶,-.-/%
U/C ∗ 𝑓-.'C(-,/

U/C + 𝐶(77
U/C ∗ 𝑓-.'C(-,/

U/C =
∗
𝑊/

&$

𝑓-.'C(-,/
U/C

 ≈ 𝐶,-.-/%WXEEWY ∗ 𝑓#q,/ + 𝐶(77WXEEWY ∗ 𝑓#q,/= ∗ >?
IJ

7op,?
 (17)

By calculating equation, up-threshold of i-th task can be
estimated as:

 𝑓#q,/ =
stded?u
i?g Mstded?u

jklljmvshKK
i?g∗7defghd,?

i?g w

shKK
jklljm (18)

If 𝑓-.'C(-,/WXEEWY > 𝑓#q,/, then assign an i-th task into big cluster. If
not, assign it into LITTLE cluster. In this step, if the the i-th task
has 𝑓-.'C(-,/WXEEWY > 𝑓2.[WXEEWY , assign it into big cluster without any
doubt. Up-threshold is calculated by the target frequency of a
big core that satisfies deadline constraint and frequency
constraint, it violates neither of them.

3) Considering DVFS
After assigning them, it still might not satisfy capacity

constraint. Then, we can make a task set feasible by increasing
running frequencies of tasks in it. In this situation, deadline
constraint will never violate because the core frequency is anti-
proportional to execution time, so execution time will decrease
when the frequency increases.

As we can see in our power model, required amount of power
for doing the same amount of workload is proportional to square
of the core frequency. Therefore, we have to consider not only
the mean of running frequencies of tasks, but also the variance
of those when increasing tasks’ running frequency.

Proof: let there are two tasks and both have the same
deadline and execution time half deadline at the core frequency
𝑓. So the sum of their execution time is equal to the capacity of
a core, i.e., utilization of the core is 1. Suppose that there is no
off-cpu workload and no static or uncore power consumption for
the core. Then a total power consumption 𝐸 can be expressed as:

 𝐸 = 2𝐶(77%&'(∗ 𝑓 ∗ 𝑉9 ∗ 𝑇 = 2𝐶(77%&'(∗ 𝑓9 (19)

where 𝑇 is the execution time, just simply assumed 𝑇 = V
7
 and

the core voltage is also simplified as 𝑉 = 𝑓.

This task set is feasible. if we decrease running frequency of
one task by half and increase running frequency of the other by
1.5 times, it still be feasible and the total utilization of the core
is unchanged. However, as required power is proportional to
square of the frequency, the total power consumption changes to
𝐸′ as follows:

 𝐸z = 𝐶(77%&'(∗ 0.5𝑓 = ∗ 2𝑡 + 1.5𝑓 = ∗ 9
=
𝑡 = ~

�
𝐸 (20)

which means total power consumption is increased when the
variance of running frequencies is increased from 0 to 0.25. As
variance is always larger than or equal to 0, the total power
consumption is larger than or equal to that with variance = 0 for
every value of variances. ◼

Considering this property, first sort tasks in terms of their
target frequencies in each cluster. Then, proceed the following
iteration in bother cluster and check whether capacity constraint
can be satisfied.

• Select tasks that have the minimum target frequency.

• Check capacity constraint if the target frequency is
increased to the next smallest target frequency.

• If capacity constraint is satisfied, then calculate the new
target frequency that maximizes the total utilization, i.e.,
𝑢U/C = 𝑚U/C or 𝑢WXEEWY = 𝑚WXEEWY in terms of the

selected cluster and assign it to all selected tasks and end
the iteration.

• If capacity constraint is not satisfied, then set the target
frequency as same as the next smallest target frequency

• If all tasks are selected at the first statement, then
calculate the minimum target frequency that meet the
capacity constraint, i.e. 𝑢U/C = 𝑚U/C or 𝑢WXEEWY =
𝑚WXEEWY in terms of the selected cluster directly. This
frequency may not be over the maximum frequency of
the selected cluster. If the calculated frequency is larger
than the maximum frequency, set the target frequency as
the maximum frequency with broken capacity constraint.

Example 1: let there are four tasks in a task set with the target
frequencies (500, 800, 1000, 1400) and assume that this cluster
is not feasible. In the first iteration, the task whose target
frequency 500 is selected and check the feasibility if the target
frequency is increased to the next smallest frequency, 800.
Assume that it still is not feasible. Then, this task now has the
new target frequency 800, which was the next smallest
frequency and the second iteration starts.

Note that when we complete the iteration completely, the
number of tasks that have the minimum target frequency is not
one. Then the first statement in the next iteration will select all
those tasks. At the first statement in the second iteration, two
tasks are selected because they have the same target frequency
and is the smallest. Check again the feasibility is satisfied if the
target frequency is increased to the next smallest frequency,
1000. Now assume that it becomes feasible. Then, the target

frequency that maximizes the total utilization would be some
point between 800 and 1000. Calculate this target frequency and
set it to two tasks.

Suppose that every tasks have the target frequency 1400. In
this situation, there is no next smallest target frequency. Then,
by following the fifth statement, we directly calculate the
minimum target frequency meeting the capacity constraint. This
frequency value should be larger than 1400. ◼

4) Considering task migration
After performing DVFS, it still cannot satisfy the capacity

constraint. At the fifth statement in DVFS procedure, if the
calculated target frequency is larger than the maximum
frequency, the target frequency of all tasks is just set to the
maximum frequency. It means the total amount of workload is
larger than the total capacity of the cluster, so some task should
be migrated to the other cluster. As the final assignment step, the
following iteration makes the task set feasible.

• Sort tasks in a cluster that the capacity constraint is
broken in terms of their big.LITTLE execution ratio 𝑟/. If
the cluster is the LITTLE cluster, sort by descending
order. If it is the big cluster, sort by ascending order.

• Calculate whether feasibility can be satisfied when the
first task in the sorted tasks is migrated. If it is still not
feasible, migrate it to the other cluster and do the first
statement again.

• If it is feasible at the second statement, fractionize the
task and migrate a portion of the task to maximize the
total utilization which this task is in, i.e., 𝑢U/C = 𝑚U/C
or 𝑢WXEEWY = 𝑚WXEEWY in terms of the cluster. After
fractionizing, increase target frequencies of tasks in the
other cluster by performing DVFS procedure once again.

• If both capacity constraints are broken during iteration, it
is not feasible.

Note that at the third statement, all tasks in the cluster, called
cluster A, has the maximum frequency of the cluster with total
utilization in the cluster close to one. However, it is still possible
to contradict either capacity constraint or frequency constraint.
During DVFS procedure in the other cluster, called cluster B, at
the third statement, some adjusted target frequencies to meet its
capacity constraint may be over than the maximum frequency of
the cluster B, it violates the frequency constraint. To solve this
problem, some portion of the task should be migrated once again
to the cluster A but it cannot be migrated because the cluster A
already has the total utilization 1 with the maximum frequency
for all tasks by the third statement. As a result, it is not feasible.

Example 2: let one task in the LITTLE cluster should be
migrated to the big cluster to be feasible. Then, the remaining
two tasks have appropriate target frequency to maximize the
total utilization in the LITTLE cluster, not the maximum
frequency. This target frequency is less than or equal to the
maximum frequency. ◼

By summarizing all procedures, our VFS-Hetero-Split
workload assignment algorithm is as follows.

Algorithm 1. VFS-Hetero-Split Workload Assignment
1: 1) Considering deadline constraint
2: foreach 𝜏/ ∈ 𝜏
3: calculate 𝑓-.'C(-,/

U/C and 𝑓-.'C(-,/WXEEWY
4: if 𝑓-.'C(-,/

U/C > 𝑓2.[
U/C then

5: return not feasible
6: end if
7: 2) Considering up-threshold
8: if 𝑓-.'C(-,/WXEEWY > 𝑓#q,/ or 𝑓-.'C(-,/WXEEWY > 𝑓2.[WXEEWY then
9: assign 𝜏/ into 𝜋U/C

10: else
11: assign 𝜏/ into 𝜋WXEEWY
12: end if
13: end foreach
14: 3) Considering DVFS
15: if C3’ is violated then
16: sort tasks in 𝜋U/C in terms of 𝑓-.'C(-,/
17: repeat
18: {𝜏} ← the tasks with the minimum 𝑓-.'C(-
19: if every tasks are selected then
20: calculate the target frequency meeting C3’
21: end repeat
22: else if feasible when 𝑓-.'C(-,b

U/C ← 𝑓-.'C(-,bvV
U/C then

23: set the new 𝑓-.'C(-,a to {𝜏} to make 𝑢U/C = 𝑚U/C
24: end repeat
25: else
26: 𝑓-.'C(-,b

U/C ← 𝑓-.'C(-,bvV
U/C

27: end if
28: until C3’ is satisfied
29: if C4’ is violated then
30: sort task in 𝜋WXEEWY in terms of 𝑓-.'C(-,/
31: do the corresponding jobs to lines 17-28.
32: end if
33: 4) Considering task migration
34: if 𝑓-.'C(-,a

U/C > 𝑓2.[
U/C then

35: sort tasks in 𝜋U/C in terms of 𝑟/
36: repeat
37: 𝜏 ← the tasks with the minimum 𝑟/
38: if feasible when 𝜏 → 𝜋WXEEWY then
39: calculate 𝜏U/C, 𝜏WXEEWY of 𝜏 to make 𝑢U/C = 𝑚U/C
40: migrate 𝜏WXEEWY into 𝜋WXEEWY
41: do DVFS once again in lines 30-31.
42: end repeat
43: end if
44: for every 𝜏 ∈ 𝜋U/C
45: else if 𝑓-.'C(-,aWXEEWY > 𝑓2.[WXEEWY then
46: sort tasks in 𝜋WXEEWY in terms of 𝑟/
47: repeat
48: 𝜏 ← the tasks with the maximum 𝑟/
49: if feasible when 𝜏 → 𝜋U/C then
50: calculate 𝜏U/C, 𝜏WXEEWY of 𝜏 to make 𝑢WXEEWY = 𝑚WXEEWY
51: migrate 𝜏U/C into 𝜋U/C
52: do DVFS once again in lines 15-28
53: end repeat
54: end if
55: for every 𝜏 ∈ 𝜋WXEEWY
56: end if
57: if C3’ or C4’ is still violated then
58: return not feasible
59: else
60: return 𝜏U/C ∈ 𝜋U/C, 𝜏WXEEWY ∈ 𝜋WXEEWY
61: end if

C. Properties of VFS-Hetero-Split

1) Requirements to be used with Hetero-Wrap algorithm
When introducing our system model, we said that we will

use the existing Hetero-Fair guideline and Hetero-Wrap
algorithm. To use these, workload assignments that are
generated by VFS-Hetero-Split must have properties that are in
workload assignments generated by the existing Hetero-Split
algorithm. The original Hetero-Split algorithm guarantees the
following two key properties:

• Among fractionally assigned tasks, there exists at most
one task that has 𝑢/V + 𝑢/9 < 1 . The other tasks have
𝑢/V + 𝑢/9 = 1.

• The number of tasks that are fractionally assigned to both
type-1 and type-2 clusters is at most 𝑚V + 𝑚9.

We will prove VFS-Hetero-Split algorithm also guarantees
those properties.

Proof: In VFS-Hetero-Split algorithm, all constraints are
satisfied via frequency scaling and total task migration, not
workload fraction. Therefore, there is no fractionally assigned
tasks except one task. In the task migration iteration, the last step
of algorithm, only the last selected task is fractionized and has
utilization 𝑢U/C + 𝑢WXEEWY ≤ 1 . In the original Hetero-Split
algorithm, 𝑚b is regarded as not only the total capacity of the
type-k cluster, but also the number of cores in type-k cluster.
Therefore, 𝑚V + 𝑚9 cannot be less than 2. In VFS-Hetero-Split
algorithm, there is at most one fractionized task, the second
property is also always satisfied. Therefore, VFS-Hetero-Split
algorithm guarantees the two properties. ◼

Since every workload assignment created by VFS-Hetero-
Split algorithm satisfies the above two properties, we can assign
the task set into the cluster by using the existing Hetero-Wrap
algorithm.

2) Time complexity
VFS-Hetero-Split algorithm consists of four procedures. In

Algorithm 1, 1) and 2) requires 𝑂(𝑛) to calculate the target
frequencies for big cluster and LITTLE cluster and some
comparisons where 𝑛 is the number of tasks. In 3), we need a
sorting mechanism which requires 𝑂(𝑛𝑙𝑜𝑔𝑛) . The repeating
procedures only require 𝑂(𝑛) , it does not affect time
complexity. In 4), we sort tasks once again which requires
𝑂(𝑛𝑙𝑜𝑔𝑛) and perform repetitions with 𝑂(𝑛) , hence total
𝑂(𝑛𝑙𝑜𝑔𝑛). For considering all four procedures, time complexity
of Algorithm 1 is still at most 𝑂(𝑛𝑙𝑜𝑔𝑛) which is same with the
existing Hetero-Split algorithm.

IV. EVALUATION
In this section, we will measure how our algorithm works

well, how energy consumption is reduced compared to
calculated power consumption when cores are always running
with their maximum frequencies.

A. Simulation environment
As we don’t have any power-measurable environment, we

assumed the parameters to make power consumption as similar
as possible to measured power consumption of Samsumg
Exynos 7420 as follows:

TABLE II. THE PARAMETERS ABOUT POWER CONSUMPTION

 A53 LITTLE cluster A57 big cluster
Cuncore 0 0
Cstatic 0.02 0.05

Cdynamic 0.13 0.39
A DVFS table that we used is from the kernel for Samsung
Galaxy S6 which used Samsung Exynos 7420 processor. The
DVFS table from kernel source is as follows:

TABLE III. THE DVFS TABLE BASED ON SAMSUNG EXYNOS 7420

A53 LITTLE cluster A57 big cluster
Voltage (mV) Frequency (Ghz) Voltage (mV) Frequency (Ghz)

675 0.4 900 0.8
712.5 0.5 925 0.9
750 0.6 950 1.0
787.5 0.7 981.25 1.1
825 0.8 1012.5 1.2
862.5 0.9 1043.75 1.3
900 1.0 1081.25 1.4
943.75 1.1 1118.75 1.5
981.25 1.2 1156.25 1.6
1018.75 1.3 1200 1.7
1068.75 1.4 1250 1.8
1118.75 1.5 1250 1.9
- - 1250 2.0
- - 1250 2.1

As Samsung Exynos 7420 has 4 big cores and 4 LITTLE
cores, we also assumed 𝑚U/C = 4 and 𝑚WXEEWY = 4. There is a
parameter 𝑟 that represents the speed of the other devices except
CPU. We assumed that this value is 0.4, which is the same speed
with the least speed of a LITTLE core.

We generate 100 feasible task sets and compare how power
consumption is reduced compared to when it is running with the
maximum frequency of each cluster.

B. Experiment result

Fig. 4. Normalized power consumption assigned by VFS-Hetero-Split

Figure 4 shows that how power consumption can be reduced
by VFS-Hetero-Split algorithm comparing running with the

maximum frequency. Calculating the least target frequency by
VFS-Hetero-Split algorithm, we could reduce power
consumption up to 48% without losing any feasibility.

We observed that even though by using VFS-Hetero-Split,
power consumption would be increased. This is because that the
actual DVFS table is different from our assumption, the core
voltage is proportional to the core frequency. In table 3, the core
voltage of the big core is fixed to 1.25V when the frequency is
larger than 1.8Ghz. Therefore, the power consumption rather
can be decreased when the target frequency of the big core is
larger than 1.8Ghz because the execution time would be
decreased. In Figure 4, this phenomenon is observed when sum
of power utilization is around 4 and 8. It means that even with
consideration on task migration, the target frequency of the big
core approaches to the maximum frequency, so normalized
power consumption approaches to one or becomes larger than
one. This phenomenon can be shown more clear if we show
power consumption on each cluster individually:

Fig. 5. Normalized power consumption on big cluster

Fig. 6. Normalized power consumption on LITTLE cluster

 In Figure 5, there are much more points with normalized
power consumption around one in the area that sum of utilization
is larger than 3.5, whereas there are no points that approaches to
the line of normalized power consumption becomes one except
sum of utilization becomes exactly four in Figure 6.

V. CONCLUSION
We implemented the workload assignment algorithm, VFS-

Hetero-Split, considering several properties of heterogeneous
multicore processing platform. Our algorithm is an extended
version of Hetero-Split algorithm and also guarantees the
properties of Hetero-Split, every workload assignment
generated by VFS-Hetero-Split can be assigned by Hetero-Fair
guideline and Hetero-Wrap algorithm.

Our purpose is to decrease power consumption to complete
a task set without losing feasibility. As power consumption is
proportional to running frequency, we should run tasks with the
minimum frequency. To achieve this goal, our algorithm assigns
tasks based on the following characteristics of HMP architecture:
workload decomposition, up-threshold, DVFS, and task
migration.

As we can freely adjust the execution time and running
frequency, considering off-cpu workload significantly affects
calculation of target running frequency. Because tasks have
different properties such as the number of branches and parallel
execution degree, they may have different values of execution
ratio. After calculating the initial target frequency for both
clusters, we consider running the task on which cluster is more
energy efficient by using up-threshold. We approximately
calculate the value of up-threshold and compare it with the target
frequency of the LITTLE cluster and assign it onto appropriate
cluster. After assigning tasks, we adjust the target frequency by
DVFS to satisfy capacity constraint. During this procedure,
frequency constraint can be violated. To solve this problem, we
migrate entire or some portion of tasks to the other cluster.

We generated feasible task sets and tested how power
consumption can be reduced when we use VFS-Hetero-Split.
We showed that our algorithm can reduce power consumption
up to 48% comparing that when the tasks is running with the
maximum frequency, without losing any feasibility.

VI. RELATED WORKS
The optimization of HMP in real-time system is based on the

different characteristics between architecture big and LITTLE
such as performance and power efficiency. However, the study
covering optimal real-time scheduling on two-type
heterogeneous multicore platform suggested the fully-migrative
scheduling framework [1]. By combining Hetero-Fair and
Hetero-Split, they developed the first optimal two-type
heterogeneous multicore scheduling algorithm. However, they
have some limitation that they did not consider DVFS widely
used in practice. Some studies tried to model heterogeneous
multicore platform by combining two cluster of CPU [8].
However, since the type of two cluster is same, it is reasonable
to call it as asymmetric multicore instead of heterogeneous
multicore. Previous study to consider both energy and feasibility
at the same time successfully modeled on ARM big.LITTLE
heterogeneous multicore platform [6]. However, since it
implemented the models as only for cluster switching, not HMP,
it is less power efficient in terms of energy consumption.
Another study covering power efficiency and CPU governing in
heterogeneous multicore platform verified the power

consumption model of the AP [7]. Based on the power
consumption model, they suggested Medusa which is a new
philosophy to control CPU frequency and they found Medusa
can reduce the power consumption without any penalty of the
performance. But, their assumption that the feasibility is always
guaranteed is not fairly practical. Also, since the power curve of
Samsung Exynos 5410 that they used is totally different from
that of current HMP architectures such as Samsung Exynos 7420,
it is becoming less useful as time goes on.

REFERENCES
[1] Hoonsung Chwa, and Jaebaek Seo, “Optimal Real-Time Scheduling on

Two-Type Heterogeneous Multicore Platforms”, IEEE Real-Time
Systems Symposium (RTSS 2015), 2015

[2] Hongsuk Chung, Munsik Kang, and Hyunduk Cho, “Heterogeneous
Multi-Processing Solution of Exynos 5 Octa with ARM big.LITTLE
Technology”, Samsung Electronics, 2013. [Online]. Available:
https://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Soluti
on_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf

[3] Brian Jeff, “big.LITTLE Technology Moves Towards Fully
Heterogeneous Global Task Scheduling”, ARM, 2013. [Online].
Available:
https://www.arm.com/files/pdf/big_LITTLE_technology_moves_toward
s_fully_heterogeneous_Global_Task_Scheduling.pdf

[4] Andrei Frumusanu and Ryan Smith, “ARM A53/A57/T760 investigated
– Samsung Galaxy Note 4 Exynos Review”, Anandtect, 2015. [Online].
Available: http://www.anandtech.com/show/8718/the-samsung-galaxy-
note-4-exynos-review/5

[5] Andrei Frumusanu, “The Samsung Exynos 7420 Deep Dive – Inside A
Modern 14nm SoC”, Anandtech, 2015. [Online]. Available:
 http://www.anandtech.com/show/9330/exynos-7420-deep-dive

[6] Hoonsung Chwa and Jaebaek Seo, “Energy and Feasibility Optimal
Global Scheduling Framework on big.LITTLE platforms”, in RTSOPS
July 7 2015

[7] Aaron Carroll and Gernot Heiser, “Unifying DVFS and Offlining in
Mobile Multicores”, in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2014 IEEE 20th

[8] Sungil Kim, Hwantae Kim, “Using DVFS and Task Scheduling
Algorithms for a Hard Real-Time Heterogeneous Multicore Processor
Environment” In Proceedings of the 2013 workshop on Energy efficient
high performance parallel and distributed computing, June 17 2013

[9] Samsung Electronics, “SM-G920S_LL_Opensource”, 2015. [Online].
Available: http://opensource.samsung.com/reception.do

[10] Linda Null and Julia Lobur, “Amdahl’s Law”, in The Essentials of
Computer Organization and Architecture, 3rd Ed, MA: Jones & Bartlett,
2010, pp 402-405

[11] Kihwan Choi and Massoud Pedram, “Dynamic Voltage and Frequency
Scaling for Energy-Efficient System Design”, University of Southern
California, April 27 2005

[12] Mostafa Abd-El-Barr and Hesham El-Rewini, “Memory Hierarchy”, in
Fundamentals of Computer Organization and Architecture, New York:
Wiley, 2013, pp 107-109

[13] S. Baruah, “Task partitioning upon heterogeneous multiprocessor
platforms”, in RTAS, 2004

[14] Android Open Source Project, “Scheduling algorithm for HMP”, 2014.
[Online]. Available: https://github.com/dtsinc/DTS-Eagle-Integration
_CAF-Android-kernel/blob/master/Documentation/scheduler/sched-
hmp.txt

