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Abstract—As many systems including running in real-time 
environment are embedded devices using ARM architecture based 
application processors, architecture considering algorithms for 
managing resources are very important. The cutting edge 
technology of the ARM architecture is big.LITTLE heterogeneous 
multicore processing (HMP). However, there is few studies about 
real-time scheduling based on this architecture. To solve this 
problem, we propose a new workload assignment algorithm called 
VFS-Hetero-Split by extending the existing Hetero-Split with 
more consideration on properties of the big.LITTLE HMP 
architecture, such as up-threshold, dynamic voltage frequency 
scaling (DVFS), and so on. It can assign workloads onto big and 
LITTLE clusters with the same time complexity of the existing 
Hetero-Split algorithm but total required power consumption is 
less than that of Hetero-Split. With VFS-Hetero-Split, running 
generated workload assignment with each target frequency can 
successfully reduce power consumption up to 48% without losing 
any feasibility compared to that running with the maximum 
frequency. 

Keywords—big.LITTLE; heterogeneous multicore processing; 
real-time scheduling; dynamic voltage frequency scaling 

I.  INTRODUCTION 
In these days, many embedded systems using ARM 

architecture based application processors for power efficiency 
are released. The earlier version of ARM architecture is much 
power-efficient, however, this power efficiency is being 
decreased because of growth of performance demand. Therefore, 
ARM introduced a big.LITTLE architecture to satisfy 
performance demand while keeping power efficiency. At first, 
all big.LITTLE runs as cluster migration. As we cannot use both 
cluster, it is less efficient and less flexible. To solve this problem, 
ARM introduced a new algorithm of big.LITTLE, called 
heterogeneous multicore processing (HMP). Under HMP 
scheduling algorithm, all cores can run simultaneously, so it 
became very flexible. To determine whether this task should be 
run on the big cluster or on the LITTLE cluster, up-threshold and 
down-threshold is newly denoted considering power efficiency 
based on the current demand. During dynamic voltage frequency 
scaling (DVFS), the target frequency of the task is increasing 
and finally the task is migrated onto the big cluster when the 
frequency is larger than up-threshold. 

Like this, we have to consider different characteristics 
between big and LITTLE cluster, so scheduling on a 
heterogeneous multicore architecture is challenging than 
scheduling on identical multicore architecture. Especially, HMP 
architecture is the cutting-edge technology of heterogeneous 

multicore architecture, there are few studies about scheduling 
algorithm on HMP architecture even demand is growing. 
Therefore, we introduce a new real-time scheduling algorithm 
running on ARM big.LITTLE architecture. We extend one of 
fully-migrative heterogeneous multicore real-time scheduling 
algorithms, Hetero-Split, to VFS-Hetero-Split considering 
characteristics of HMP architecture such as DVFS, workload 
decomposition, threshold, and so on [1]. Satisfying properties of 
Hetero-Split, a workload assignment generated by VFS-Hetero-
Split can be used with Hetero-Wrap algorithm, the first optimal 
two-type heterogeneous multicore scheduling algorithm. 

The remaining paper consists of the following sections: 
section II introduces background knowledge about ARM 
big.LITTLE model, power model of this architecture, DVFS, 
workload decomposition, and our system model. In section III, 
we introduce our algorithm VFS-Hetero-Split. We adopted 
similar approach that Hetero-Split used: list feasibility 
conditions and consider one by one. To make a task set satisfy 
these conditions, we consider workload decomposition, DVFS, 
task migration, and so on. In section IV, we perform experiment 
how power consumption is reduced compared to that when 
processor is running with its maximum frequency using the 
simulator that we implemented.  

II. BACKGROUNDS 

A. ARM big.LITTLE model 
Heterogeneity means that it is composed of different types 

of cores. One of the famous heterogeneous architectures is 
big.LITTLE architecture suggested by ARM holdings, one of 
the most famous application processor design company.  

As several years ago, architectures designed by ARM did not 
require high power. However, as performance of chips is 
increasing, required power consumption is also increasing, 
which is too burden to handle with the current battery 
technology. To solve this problem, ARM implemented a new 
concept of heterogeneous multicore architecture, named 
big.LITTLE. Although big and LITTLE cores share the same 
Instruction-Set-Architecture (ISA), big cores and LITTLE cores 
have many differences such as a predictor and issue bandwidth 
between them. It means that they have different power efficiency 
and performance characteristics. Big cores have a complex 
architecture but have good performance and high power 
consumption, while LITTLE cores are good for power 
efficiency due to their simple architecture. Therefore, if a task is 
high-demand, it is migrated to a big core to meet their demand 
or runs in a LITTLE core if not.  Table 1 shows differences of 



A53 architecture used as LITTLE cores and A57 architecture 
used as big cores [4]. 

TABLE I.  SPECIFICATIONS OF THE A57 AND A53 ARCHITECTURES 

 A53 architecture A57 architecture 
Decode 2-wide 3-wide 
Pipeline depth 8 15 
Instruction order In-order Out-of-order 

branch prediction Conditional & indirect 
branch prediction two-level 

Execution ports 2 8 
L1 cache (KiB) 8 to 64(I) + 8 to 64(D) 48(I) + 32(D) 
L2 cache (KiB) 128 to 2048 512 to 2048 
DMIPS/MHz 2.3 4.1 to 4.76 
big.LITTLE role LITTLE Big 
 

When the big.LITTLE concept is released at first, 
big.LITTLE architectures are executed as a cluster migration 
which uses only either a big cluster or a LITTLE cluster at the 
same time. In normal situation, only the LITTLE cluster is used 
while all tasks in the LITTLE cluster are migrated and run in the 
big cluster when they are being heavy. It is simple to implement 
but less efficient and flexible because we can only use one 
cluster at a time. To solve this problem and to increase efficiency, 
Heterogeneous Multicore Processing (HMP), also called as 
Global Task Scheduling (GTS), is introduced [2, 3]. Since all 
physical cores can be controlled simultaneously, power 
management can be done more carefully and efficiently. 

Nowadays many chip vendors such as Samsung and 
Qualcomm are making ARM big.LITTLE processors. In case of 
Samsung Exynos 7420, it is composed of four A53 LITTLE 
cores and four A57 big cores and acts as HMP. Figure 1 and 
Figure 2 are the number of cores – frequency – power 
consumption curve which are measured by Andrei [5]. 

 
Fig. 1. The power curve of A57 big cores in Samsung Exynos 7420 

Figure 1 is the graph about the power consumption of A57 
big cores in Samsung Exynos 7420 processor. The power curve 
has different shape from A15 architecture based big cores in 
Samsung Exynos 5410 [6], because Samsung Exynos 7420 runs 
as heterogeneous multicore processing, not cluster migration 
processing. As cores can be controlled individually, the total 
power consumption is proportional to the number of cores.  

 
Fig. 2. The power curve of A53 LITTLE cores in Samsung Exynos 7420 

Figure 2 is the graph about power consumption of LITTLE 
cores. It has a similar shape with what of big cores, while the 
LITTLE cores spend less power than big cores at the same 
frequency. 

B. Power and energy model 
To assign tasks in terms of power efficiency, we have to 

model CPU power consumptions. We applied the model that 
Aaron used and distinguished the state into active, idle, and 
offline [7]. Active state is a state when CPU is on and works 
some task. Idle state is a state when CPU is on, but they do not 
have some task to do. Offline state means that the core is in sleep 
state so cannot do any works before going into idle state. 
Equation 1 is the represents total power consumption of CPU. 

 𝑃 = 𝑃#$%&'( + 𝑛(𝑃,-.-/% + 𝑃01$.2/%) (1) 

where 𝑛 is the number of cores that are not in offline state. 

𝑃#$%&'( means the power consumption which is independent 
with the state like idle, active. Even every cores are in off state, 
the amount of power 𝑃#$%&'(  should be consumed. 𝑃,-.-/% 
means the power consumption of a CPU core when it is on but 
idle. This is independent from the workload but affected by the 
voltage of the core. 𝑃01$.2/%  is the power consumption when 
the core is online and handles some tasks. The following 
equations represent 𝑃,-.-/% and 𝑃01$.2/%. 

 𝑃,-.-/% = 𝐶,-.-/% ∗ 𝑉 (2) 

 𝑃01$.2/% = 𝐶(77 ∗ 𝑓 ∗ 𝑉9 (3) 



where 𝐶,-.-/% is a constant depending on the core type, 𝐶(77 is 
an effective capacitance, 𝑓 is the core frequency, and 𝑉 is the 
core voltage. 

Let time to complete an i-th task be 𝑇/ . Then total energy 
consumption 𝐸/ to complete an i-th task should be: 

 𝐸/ = 𝑃/ ∗ 𝑇/ (4) 

C. DVFS and workload decomposition 
Dynamic Voltage Frequency Scaling (DVFS) is a technique 

used in CPUs to reduce power consumption. Especially, as 
Aaron said, most of devices are embedded devices and have 
limited power budget so energy efficiency is one of primary 
design criterions. 

As explained in the power model section, an additional 
required power consumption to handle a task when the core is in 
idle state can be expressed as [8]: 

 𝑃.00 = 𝐶(77𝑓𝑉9 (5) 

According to the DVFS table [9], the core voltage is 
asymptotically proportional to the core frequency. Therefore, we 
can re-express the above equation as: 

 𝑃.00 ≅ 𝐶(77𝑓= (6) 

We simply assumed that the frequency is the number of 
instructions that the core can handle in a time unit and the 
workload of the task is the number of instructions to be 
completed in our system model. Thus, the execution time can be 
expressed as: 

 𝑇/ =
>?
7

 (7) 

where 𝑤/  is workload of the task 𝜏/ . Then, total power 
consumption to process a task can be expressed as: 

 𝐸/ = 𝑃.00 ∗ 𝑇/ ∝ 𝑓9 (8) 

which means that the required amount of energy proportional to 
square of the frequency. Therefore, rather than finishing tasks 
fast with high frequency, it is better to run tasks with a frequency 
as low as possible. In real-time environment, every tasks have 
its own deadline. Hence, we define the target frequency that 
minimizes power consumption: 

 𝑓-.'C(-,/ =
>?
E?
= >?

F?
= >?

G
 (9) 

Note that we increased the execution time of i-th task as long 
as possible, to its deadline. As all tasks have its own unique 
target frequency, cores should adjust their running frequency 
and appropriate voltage whenever switching cores, which is why 
it is called DVFS. 

However, even we set frequency double, the execution time 
will not be half, according to Amdahl’s law [10]. We must 
consider this characteristic so decompose workload of i-th task 

into two parts: on-cpu workload 𝑊/
&$  and off-cpu workload 

𝑊/
&77 [11]. Then we can view the execution time of i-th task as: 

 𝑇/ = 𝑇/&$ + 𝑇/
&77 = >?

IJ

7
+

>?
IKK

'
 (10) 

where 𝑟  is the speed of another devices except for CPU and 
𝑇/
&77  is the execution time to handle off-cpu workload 𝑊/

&77 
and constant regardless of the cpu frequency 𝑓. Then, the target 
frequency of i-th task can be recalculated as: 

 𝑓-.'C(-,/ =
>?
IJ

F?ME?
IKK =

>?
IJ

GME?
IKK (11) 

Note that the new target frequency is less than or equal to the 

old target frequency, i.e. 
𝑊𝑖
𝑜𝑛

𝐷−𝑇𝑖
𝑜𝑓𝑓 ≤

𝑊𝑖

𝐷
, which means that we can 

set lower frequency and reduce more power consumption when 
considering workload decomposition. 

Proof: With workload decomposition, 𝐷 = 𝑇/ = 𝑇/&$ +
𝑇/
&77  and 𝑊/ = 𝑊/

&$ + 𝑊/
&77 . Then the inequality can be 

expressed as 𝑊/
&$ 𝑇/&$ + 𝑇/

&77 ≤ 𝑊/
&$ + 𝑊/

&77 𝑇/&$ , so 
𝑇/&$𝑇/

&77 𝑓 − 𝑟 ≥ 0. According to memory hierarchy [12], the 
fastest component in computers is a processor. Therefore, the 
inequality always holds.                     ◼ 

Following the definition of big.LITTLE execution ratio 𝑟/, 
big cores are 𝑟/ times faster than LITTLE cores for i-th task, i.e. 
𝑇/
U/C,&$ = V

'?
𝑇/
WXEEWY,&$. Hence, the target frequency for big core 

and LITTLE core of i-th task have the following relationship: 

 𝑓-.'C(-,/
U/C = V

'?
𝑓-.'C(-,/WXEEWY  (12) 

D. System model 
We consider an ARM big.LITTLE HMP architecture based 

cluster 𝜋 is organized with a Cortex-A57 big cluster 𝜋U/C with 
𝑛U/C  number of big cores and a Cortex-A53 LITTLE cluster 
𝜋WXEEWY  with 𝑛WXEEWY  number of LITTLE cores. The range of 
frequency depends on the type of the cluster : a big core can set 
its frequency 𝑓U/C between (𝑓2/$

U/C, 𝑓2.[
U/C ) and so does a LITTLE 

core between (𝑓2/$WXEEWY, 𝑓2.[WXEEWY) . Although some instructions 
require more than one number of cycles to complete, we simply 
assume that the core frequency is the number of instructions that 
the core can handle in a time unit. 

Each task 𝜏/ ∈ 𝜏 is a periodic task and has 4 characteristics: 

• A period 𝑃/, 

• The amount of workload 𝑊/ denoted by the number of 
instructions in the task, 

• On-cpu workload ratio 𝑟/> that represents the portion of 
on-cpu workload when assuming total workload as one, 

• big.LITTLE execution ratio 𝑟/E  that represents the 
execution ratio in a big core to a LITTLE core when 
running in the same frequency. 



To match our assumption about the cluster, a period 𝑃/  is 
defined as the number of time unit to complete this task and the 
amount of workload 𝑊/ is denoted by the number of instructions 
in this task. Note that big.LITTLE execution ratio is always 
larger than one because a big core is always faster than a 
LITTLE core when they run with the same frequency. 

Our assumptions about the tasks are all same with what 
Chwa assumed. Therefore, it our algorithm can successfully 
generate a workload assignment that has the same properties 
with what is generated by Hetero-Split algorithm, we can use 
Hetero-Fair guidelines and Hetero-Wrap algorithm as they are. 

III. VFS-HETERO-SPLIT : TASK WORKLOAD ASSIGNMENT 
In this section, we introduce our approach to assign task 

workloads on ARM big.LITTLE architecture. Our approach is 
extended from Hetero-Split and considers not only feasibility 
but also energy-efficiency. 

Hetero-Split algorithm approached to the problem with two 
steps: feasibility conditions and per-cluster task workload 
assignment algorithm. We approach to the problem with the 
same method, but including an additional feasibility condition 
and a revised task workload assignment algorithm for ARM 
big.LITTLE considering energy efficiency. 

A. Feasibility conditions 
According to feasibility analysis of fully-migrative 

heterogeneous multicore scheduling [13], five conditions C1-C5 
must hold for a task workload assignment to be feasible. Among 
these constraints, Hetero-Split aimed to find a “specific” feasible 
task workload assignment by only focusing on C2 (deadline 
constraint) and C3 and C4 (capacity constraint) as follows: 

C2 : ∀𝜏/ ∈ 𝜏, 𝑢/V + 𝑢/9 ≤ 1, 

C3 : 𝑢/V ≤ 𝑚Va?∈a , 

C4 : 𝑢/9 ≤ 𝑚9a?∈a . 

where 𝑢/b  is the utilization of the i-th task when running on a 
type-k cluster and 𝑚b is the total capacity of the type-k cluster.  

In our model, these conditions can be regarded as: 

C2’ : ∀𝜏/ ∈ 𝜏, 𝑇7c7defghd,?
i?g ,/

U/C + 𝑇7c7defghd,?jklljm,/
WXEEWY + 𝑇/

&77 ≤ 𝑃/, 

C3’ : 𝑢
7c7defghd,?

i?g ,/
U/C ≤ 𝑚U/Ca?∈a , 

C4’ : 𝑢7c7defghd,?jklljm,/
WXEEWY ≤ 𝑚WXEEWYa?∈a . 

where the utilization can be simply calculated as: 

 𝑢7,/WXEEWY =
>?
IJ,jklljm

7
∗ V

F?ME?
IKK , 𝑢7,/

U/C =
#K,?
jklljm

'?
 (13) 

Note that C2 is still the deadline constraint, but expressed 
with the execution time, not with utilization because of workload 
decomposition. 

We are now considering DVFS, so there is an another 
constraint named frequency constraint. If the target frequency of 
a task that satisfies the deadline of the task is larger than the 
maximum frequency 𝑓2.[, it means it cannot run on that core. 
Therefore, the new frequency constraint C1 is: 

C1 : ∀𝜏/ ∈ 𝜏, 𝑓-.'C(-,/
U/C ≤ 𝑓2.[

U/C  

Note that there is no restriction about the target frequency of 
a LITTLE core because a big core is always faster than a 
LITTLE core and has larger target frequency, i.e. 𝑓2.[

U/C ≥
𝑓2.[WXEEWY. The i-th task might not be feasible solely on LITTLE 
cluster, but is always feasible on the whole cluster when it 
satisfies C1. 

B. ARM big.LITTLE workload assignment algorithm 
We implement improved Hetero-Split, called VFS-Hetero-

Split. It guarantees to find a feasible workload assignment on 
ARM big.LITTLE architecture satisfying new constraints C1-
C4, similar to Hetero-Split. At first, we consider the deadline 
constraint, and then assign tasks into clusters with several new 
definitions from HMP architecture. 

1) Considering the deadline constraint 
Different from the existing Hetero-Split algorithm, VFS-

Hetero-Split algorithm does not consider workload fraction at 
this time. Instead, we calculate the target frequency for a big core 
and a LITTLE core of each task, i.e. 𝑓-.'C(-,/

U/C  and 𝑓-.'C(-,/WXEEWY , by 
using equation 11 and equation 12. 

If the target frequency for a big core is larger than the 
maximum frequency of a big core, i.e. 𝑓-.'C(-,/

U/C > 𝑓2.[
U/C , then this 

task should violate either the deadline constraint or the 
frequency constraint, which means it is not feasible. 

Also, if the target frequencies for either big core or LITTLE 
core is less than the minimum frequencies of the corresponding 
cluster, then set the target frequency with the minimum 
frequency. 

We calculated the target frequencies of all tasks in the task 
set which satisfy their deadline constraints. Only what we have 
to do is to assign these tasks onto big.LITTLE clusters 
considering power consumption and capacity constraints. 

2) Considering up-threshold 
In HMP, there are definitions about up-threshold and down-

threshold. Up-threshold is a frequency for a LITTLE core which 
is a match point between energy efficiency of the LITTLE core 
and that of a big core. In opposite, down-threshold is a frequency 
for a big core which is a match point between energy efficiency 
of a LITTLE core and the big core [14]. 



 
Fig. 3. Energy efficiency – performance graph of Samsung Exynos 7420 

Figure 3 is a performance-energy efficiency graph of 
Samsung Exynos 7420 measured by Andrei. The up arrow on 
the blue line is up-threshold for an A53 LITTLE core and the 
down arrow on the red line is down-threshold for an A57 big 
core. In existing HMP scheduling, we don’t know the actual 
amount of tasks so frequency is changed dynamically 
considering a current demand in each CPU clock cycle. Once the 
frequency for a LITTLE core calculated from the current 
demand become larger than up-threshold, it is migrated to a big 
core.  

Slightly different from the original use of up-threshold, we 
use only up-threshold to figure out which cluster is more energy-
efficient for tasks to be run on. As VFS-Hetero-Split allocates 
tasks by using Hetero-Wrap algorithm, which is one of offline 
task allocation method, we don’t have to use up-threshold and 
down-threshold in terms of the current demand of tasks because 
we know which cluster is more energy efficient for each task 
before actually assigning it. If the target frequency for a LITTLE 
core of a task is larger than up-threshold, it means it is more 
energy-efficient when it runs on a big core. 

To assign tasks in terms of energy efficiency, we should first 
calculate up-threshold for each task. As the exact calculation of 
up-threshold is too complex, some factors will be ignored during 
calculation. By definition of up-threshold, the following 
equation holds: 

 𝐸7c7op,?
WXEEWY = 𝐸

7c7defghd,?
i?g

U/C  (14) 

where 𝑓#q,/ is up-threshold.  

By the equation 4 with workload decomposition, 

 𝑃%&'(,/WXEEWY ∗ 𝑇7c7op,?
WXEEWY + 𝐸/

&77 = 𝑃%&'(,/
U/C ∗ 𝑇

7c7defghd,?
i?g

U/C + 𝐸/
&77  (15) 

According to our power model, 𝑃 can be expressed as: 

𝑃,-.-/%WXEEWY + 𝐶(77WXEEWY ∗ 𝑓#q,/ ∗ 𝑉#q,/9 ∗
𝑊/

&$

𝑓#q,/
 

 = 𝑃,-.-/%
U/C + 𝐶(77

U/C ∗ 𝑓-.'C(-,/
U/C ∗ 𝑉-.'C(-,/

U/C 9
∗ >?

IJ

7defghd,?
i?g  (16) 

As 𝑃,-.-/% is proportional to the core voltage and the voltage 
is asymptotically proportional to the core frequency, then 

𝐶,-.-/%
U/C ∗ 𝑓-.'C(-,/

U/C + 𝐶(77
U/C ∗ 𝑓-.'C(-,/

U/C =
∗
𝑊/

&$

𝑓-.'C(-,/
U/C  

 ≈ 𝐶,-.-/%WXEEWY ∗ 𝑓#q,/ + 𝐶(77WXEEWY ∗ 𝑓#q,/= ∗ >?
IJ

7op,?
  (17) 

By calculating equation, up-threshold of i-th task can be 
estimated as: 

 𝑓#q,/ =
stded?u
i?g Mstded?u

jklljmvshKK
i?g∗7defghd,?

i?g w

shKK
jklljm   (18) 

If 𝑓-.'C(-,/WXEEWY > 𝑓#q,/, then assign an i-th task into big cluster. If 
not, assign it into LITTLE cluster. In this step, if the the i-th task 
has 𝑓-.'C(-,/WXEEWY > 𝑓2.[WXEEWY , assign it into big cluster without any 
doubt. Up-threshold is calculated by the target frequency of a 
big core that satisfies deadline constraint and frequency 
constraint, it violates neither of them. 

3) Considering DVFS 
After assigning them, it still might not satisfy capacity 

constraint. Then, we can make a task set feasible by increasing 
running frequencies of tasks in it. In this situation, deadline 
constraint will never violate because the core frequency is anti-
proportional to execution time, so execution time will decrease 
when the frequency increases. 

As we can see in our power model, required amount of power 
for doing the same amount of workload is proportional to square 
of the core frequency. Therefore, we have to consider not only 
the mean of running frequencies of tasks, but also the variance 
of those when increasing tasks’ running frequency. 

Proof: let there are two tasks and both have the same 
deadline and execution time half deadline at the core frequency 
𝑓. So the sum of their execution time is equal to the capacity of 
a core, i.e., utilization of the core is 1. Suppose that there is no 
off-cpu workload and no static or uncore power consumption for 
the core. Then a total power consumption 𝐸 can be expressed as: 

 𝐸 = 2𝐶(77%&'( ∗ 𝑓 ∗ 𝑉9 ∗ 𝑇 = 2𝐶(77%&'( ∗ 𝑓9 (19) 



where 𝑇 is the execution time, just simply assumed 𝑇 = V
7
 and 

the core voltage is also simplified as 𝑉 = 𝑓. 

This task set is feasible. if we decrease running frequency of 
one task by half and increase running frequency of the other by 
1.5 times, it still be feasible and the total utilization of the core 
is unchanged. However, as required power is proportional to 
square of the frequency, the total power consumption changes to 
𝐸′ as follows: 

 𝐸z = 𝐶(77%&'( ∗ 0.5𝑓 = ∗ 2𝑡 + 1.5𝑓 = ∗ 9
=
𝑡 = ~

�
𝐸 (20) 

which means total power consumption is increased when the 
variance of running frequencies is increased from 0 to 0.25. As 
variance is always larger than or equal to 0, the total power 
consumption is larger than or equal to that with variance = 0 for 
every value of variances.                    ◼  

Considering this property, first sort tasks in terms of their 
target frequencies in each cluster. Then, proceed the following 
iteration in bother cluster and check whether capacity constraint 
can be satisfied. 

• Select tasks that have the minimum target frequency. 

• Check capacity constraint if the target frequency is 
increased to the next smallest target frequency. 

• If capacity constraint is satisfied, then calculate the new 
target frequency that maximizes the total utilization, i.e., 
𝑢U/C = 𝑚U/C  or 𝑢WXEEWY = 𝑚WXEEWY  in terms of the 

selected cluster and assign it to all selected tasks and end 
the iteration. 

• If capacity constraint is not satisfied, then set the target 
frequency as same as the next smallest target frequency 

• If all tasks are selected at the first statement, then 
calculate the minimum target frequency that meet the 
capacity constraint, i.e. 𝑢U/C = 𝑚U/C  or 𝑢WXEEWY =
𝑚WXEEWY  in terms of the selected cluster directly. This 
frequency may not be over the maximum frequency of 
the selected cluster. If the calculated frequency is larger 
than the maximum frequency, set the target frequency as 
the maximum frequency with broken capacity constraint. 

Example 1: let there are four tasks in a task set with the target 
frequencies (500, 800, 1000, 1400) and assume that this cluster 
is not feasible. In the first iteration, the task whose target 
frequency 500 is selected and check the feasibility if the target 
frequency is increased to the next smallest frequency, 800. 
Assume that it still is not feasible. Then, this task now has the 
new target frequency 800, which was the next smallest 
frequency and the second iteration starts. 

Note that when we complete the iteration completely, the 
number of tasks that have the minimum target frequency is not 
one. Then the first statement in the next iteration will select all 
those tasks. At the first statement in the second iteration, two 
tasks are selected because they have the same target frequency 
and is the smallest. Check again the feasibility is satisfied if the 
target frequency is increased to the next smallest frequency, 
1000. Now assume that it becomes feasible. Then, the target 

frequency that maximizes the total utilization would be some 
point between 800 and 1000. Calculate this target frequency and 
set it to two tasks. 

Suppose that every tasks have the target frequency 1400. In 
this situation, there is no next smallest target frequency. Then, 
by following the fifth statement, we directly calculate the 
minimum target frequency meeting the capacity constraint. This 
frequency value should be larger than 1400.            ◼ 

4) Considering task migration 
After performing DVFS, it still cannot satisfy the capacity 

constraint. At the fifth statement in DVFS procedure, if the 
calculated target frequency is larger than the maximum 
frequency, the target frequency of all tasks is just set to the 
maximum frequency. It means the total amount of workload is 
larger than the total capacity of the cluster, so some task should 
be migrated to the other cluster. As the final assignment step, the 
following iteration makes the task set feasible. 

• Sort tasks in a cluster that the capacity constraint is 
broken in terms of their big.LITTLE execution ratio 𝑟/. If 
the cluster is the LITTLE cluster, sort by descending 
order. If it is the big cluster, sort by ascending order. 

• Calculate whether feasibility can be satisfied when the 
first task in the sorted tasks is migrated. If it is still not 
feasible, migrate it to the other cluster and do the first 
statement again.  

• If it is feasible at the second statement, fractionize the 
task and migrate a portion of the task to maximize the 
total utilization which this task is in, i.e., 𝑢U/C = 𝑚U/C 
or 𝑢WXEEWY = 𝑚WXEEWY  in terms of the cluster. After 
fractionizing, increase target frequencies of tasks in the 
other cluster by performing DVFS procedure once again. 

• If both capacity constraints are broken during iteration, it 
is not feasible. 

Note that at the third statement, all tasks in the cluster, called 
cluster A, has the maximum frequency of the cluster with total 
utilization in the cluster close to one. However, it is still possible 
to contradict either capacity constraint or frequency constraint. 
During DVFS procedure in the other cluster, called cluster B, at 
the third statement, some adjusted target frequencies to meet its 
capacity constraint may be over than the maximum frequency of 
the cluster B, it violates the frequency constraint. To solve this 
problem, some portion of the task should be migrated once again 
to the cluster A but it cannot be migrated because the cluster A 
already has the total utilization 1 with the maximum frequency 
for all tasks by the third statement. As a result, it is not feasible. 

Example 2: let one task in the LITTLE cluster should be 
migrated to the big cluster to be feasible. Then, the remaining 
two tasks have appropriate target frequency to maximize the 
total utilization in the LITTLE cluster, not the maximum 
frequency. This target frequency is less than or equal to the 
maximum frequency.              ◼ 

By summarizing all procedures, our VFS-Hetero-Split 
workload assignment algorithm is as follows. 

 



Algorithm 1. VFS-Hetero-Split Workload Assignment 
1: 1) Considering deadline constraint 
2: foreach 𝜏/ ∈ 𝜏  
3:     calculate 𝑓-.'C(-,/

U/C  and 𝑓-.'C(-,/WXEEWY  
4:     if 𝑓-.'C(-,/

U/C > 𝑓2.[
U/C  then 

5:         return not feasible 
6:     end if 
7: 2) Considering up-threshold 
8:     if 𝑓-.'C(-,/WXEEWY > 𝑓#q,/  or 𝑓-.'C(-,/WXEEWY > 𝑓2.[WXEEWY  then 
9:         assign 𝜏/  into 𝜋U/C 

10:     else 
11:         assign 𝜏/  into 𝜋WXEEWY  
12:     end if 
13: end foreach 
14: 3) Considering DVFS 
15: if C3’ is violated then 
16:     sort tasks in 𝜋U/C in terms of 𝑓-.'C(-,/  
17:     repeat 
18:         {𝜏} ← the tasks with the minimum 𝑓-.'C(- 
19:         if every tasks are selected then 
20:             calculate the target frequency meeting C3’ 
21:             end repeat 
22:         else if feasible when 𝑓-.'C(-,b

U/C ← 𝑓-.'C(-,bvV
U/C  then 

23:             set the new 𝑓-.'C(-,a to {𝜏} to make 𝑢U/C = 𝑚U/C 
24:             end repeat 
25:         else 
26:             𝑓-.'C(-,b

U/C ← 𝑓-.'C(-,bvV
U/C  

27:         end if 
28:     until C3’ is satisfied 
29: if C4’ is violated then 
30:     sort task in 𝜋WXEEWY  in terms of 𝑓-.'C(-,/  
31:     do the corresponding jobs to lines 17-28. 
32: end if 
33: 4) Considering task migration 
34: if 𝑓-.'C(-,a

U/C > 𝑓2.[
U/C  then 

35:     sort tasks in 𝜋U/C in terms of 𝑟/  
36:     repeat 
37:         𝜏 ← the tasks with the minimum 𝑟/  
38:         if feasible when 𝜏 → 𝜋WXEEWY  then 
39:             calculate 𝜏U/C, 𝜏WXEEWY  of 𝜏 to make 𝑢U/C = 𝑚U/C 
40:             migrate 𝜏WXEEWY  into 𝜋WXEEWY  
41:             do DVFS once again in lines 30-31. 
42:             end repeat 
43:         end if 
44:     for every 𝜏 ∈ 𝜋U/C 
45: else if 𝑓-.'C(-,aWXEEWY > 𝑓2.[WXEEWY  then 
46:     sort tasks in 𝜋WXEEWY  in terms of 𝑟/  
47:     repeat 
48:         𝜏 ← the tasks with the maximum 𝑟/  
49:         if feasible when 𝜏 → 𝜋U/C then 
50:             calculate 𝜏U/C, 𝜏WXEEWY  of 𝜏 to make 𝑢WXEEWY = 𝑚WXEEWY  
51:             migrate 𝜏U/C into 𝜋U/C 
52:             do DVFS once again in lines 15-28 
53:             end repeat 
54:         end if 
55:     for every 𝜏 ∈ 𝜋WXEEWY  
56: end if 
57: if C3’ or C4’ is still violated then 
58:     return not feasible 
59: else 
60:     return 𝜏U/C ∈ 𝜋U/C, 𝜏WXEEWY ∈ 𝜋WXEEWY  
61: end if 

 

 

C. Properties of VFS-Hetero-Split 

1) Requirements to be used with Hetero-Wrap algorithm 
When introducing our system model, we said that we will 

use the existing Hetero-Fair guideline and Hetero-Wrap 
algorithm. To use these, workload assignments that are 
generated by VFS-Hetero-Split must have properties that are in 
workload assignments generated by the existing Hetero-Split 
algorithm. The original Hetero-Split algorithm guarantees the 
following two key properties: 

• Among fractionally assigned tasks, there exists at most 
one task that has 𝑢/V + 𝑢/9 < 1 . The other tasks have 
𝑢/V + 𝑢/9 = 1. 

• The number of tasks that are fractionally assigned to both 
type-1 and type-2 clusters is at most 𝑚V + 𝑚9. 

We will prove VFS-Hetero-Split algorithm also guarantees 
those properties. 

Proof: In VFS-Hetero-Split algorithm, all constraints are 
satisfied via frequency scaling and total task migration, not 
workload fraction. Therefore, there is no fractionally assigned 
tasks except one task. In the task migration iteration, the last step 
of algorithm, only the last selected task is fractionized and has 
utilization 𝑢U/C + 𝑢WXEEWY ≤ 1 . In the original Hetero-Split 
algorithm, 𝑚b is regarded as not only the total capacity of the 
type-k cluster, but also the number of cores in type-k cluster. 
Therefore, 𝑚V + 𝑚9 cannot be less than 2. In VFS-Hetero-Split 
algorithm, there is at most one fractionized task, the second 
property is also always satisfied. Therefore, VFS-Hetero-Split 
algorithm guarantees the two properties.            ◼ 

Since every workload assignment created by VFS-Hetero-
Split algorithm satisfies the above two properties, we can assign 
the task set into the cluster by using the existing Hetero-Wrap 
algorithm. 

2) Time complexity 
VFS-Hetero-Split algorithm consists of four procedures. In 

Algorithm 1, 1) and 2) requires 𝑂(𝑛)  to calculate the target 
frequencies for big cluster and LITTLE cluster and some 
comparisons where 𝑛 is the number of tasks. In 3), we need a 
sorting mechanism which requires 𝑂(𝑛𝑙𝑜𝑔𝑛) . The repeating 
procedures only require 𝑂(𝑛) , it does not affect time 
complexity. In 4), we sort tasks once again which requires 
𝑂(𝑛𝑙𝑜𝑔𝑛)  and perform repetitions with 𝑂(𝑛) , hence total 
𝑂(𝑛𝑙𝑜𝑔𝑛). For considering all four procedures, time complexity 
of Algorithm 1 is still at most 𝑂(𝑛𝑙𝑜𝑔𝑛) which is same with the 
existing Hetero-Split algorithm. 

IV. EVALUATION 
In this section, we will measure how our algorithm works 

well, how energy consumption is reduced compared to 
calculated power consumption when cores are always running 
with their maximum frequencies. 

  



A. Simulation environment 
As we don’t have any power-measurable environment, we 

assumed the parameters to make power consumption as similar 
as possible to measured power consumption of Samsumg 
Exynos 7420 as follows: 

TABLE II.  THE PARAMETERS ABOUT POWER CONSUMPTION 

 A53 LITTLE cluster A57 big cluster 
Cuncore 0 0 
Cstatic 0.02 0.05 

Cdynamic 0.13 0.39 
A DVFS table that we used is from the kernel for Samsung 
Galaxy S6 which used Samsung Exynos 7420 processor. The 
DVFS table from kernel source is as follows: 

TABLE III.  THE DVFS TABLE BASED ON SAMSUNG EXYNOS 7420 

A53 LITTLE cluster A57 big cluster 
Voltage (mV) Frequency (Ghz) Voltage (mV) Frequency (Ghz) 

675 0.4 900 0.8 
712.5 0.5 925 0.9 
750 0.6 950 1.0 
787.5 0.7 981.25 1.1 
825 0.8 1012.5 1.2 
862.5 0.9 1043.75 1.3 
900 1.0 1081.25 1.4 
943.75 1.1 1118.75 1.5 
981.25 1.2 1156.25 1.6 
1018.75 1.3 1200 1.7 
1068.75 1.4 1250 1.8 
1118.75 1.5 1250 1.9 
- - 1250 2.0 
- - 1250 2.1 

As Samsung Exynos 7420 has 4 big cores and 4 LITTLE 
cores, we also assumed 𝑚U/C = 4 and 𝑚WXEEWY = 4. There is a 
parameter 𝑟 that represents the speed of the other devices except 
CPU. We assumed that this value is 0.4, which is the same speed 
with the least speed of a LITTLE core. 

We generate 100 feasible task sets and compare how power 
consumption is reduced compared to when it is running with the 
maximum frequency of each cluster. 

B. Experiment result 

 
Fig. 4. Normalized power consumption assigned by VFS-Hetero-Split 

Figure 4 shows that how power consumption can be reduced 
by VFS-Hetero-Split algorithm comparing running with the 

maximum frequency. Calculating the least target frequency by 
VFS-Hetero-Split algorithm, we could reduce power 
consumption up to 48% without losing any feasibility.  

We observed that even though by using VFS-Hetero-Split, 
power consumption would be increased. This is because that the 
actual DVFS table is different from our assumption, the core 
voltage is proportional to the core frequency. In table 3, the core 
voltage of the big core is fixed to 1.25V when the frequency is 
larger than 1.8Ghz. Therefore, the power consumption rather 
can be decreased when the target frequency of the big core is 
larger than 1.8Ghz because the execution time would be 
decreased. In Figure 4, this phenomenon is observed when sum 
of power utilization is around 4 and 8. It means that even with 
consideration on task migration, the target frequency of the big 
core approaches to the maximum frequency, so normalized 
power consumption approaches to one or becomes larger than 
one. This phenomenon can be shown more clear if we show 
power consumption on each cluster individually: 

 
Fig. 5. Normalized power consumption on big cluster 

 
Fig. 6. Normalized power consumption on LITTLE cluster 

 In Figure 5, there are much more points with normalized 
power consumption around one in the area that sum of utilization 
is larger than 3.5, whereas there are no points that approaches to 
the line of normalized power consumption becomes one except 
sum of utilization becomes exactly four in Figure 6. 



V. CONCLUSION 
We implemented the workload assignment algorithm, VFS-

Hetero-Split, considering several properties of heterogeneous 
multicore processing platform. Our algorithm is an extended 
version of Hetero-Split algorithm and also guarantees the 
properties of Hetero-Split, every workload assignment 
generated by VFS-Hetero-Split can be assigned by Hetero-Fair 
guideline and Hetero-Wrap algorithm. 

Our purpose is to decrease power consumption to complete 
a task set without losing feasibility. As power consumption is 
proportional to running frequency, we should run tasks with the 
minimum frequency. To achieve this goal, our algorithm assigns 
tasks based on the following characteristics of HMP architecture: 
workload decomposition, up-threshold, DVFS, and task 
migration.  

As we can freely adjust the execution time and running 
frequency, considering off-cpu workload significantly affects 
calculation of target running frequency. Because tasks have 
different properties such as the number of branches and parallel 
execution degree, they may have different values of execution 
ratio. After calculating the initial target frequency for both 
clusters, we consider running the task on which cluster is more 
energy efficient by using up-threshold. We approximately 
calculate the value of up-threshold and compare it with the target 
frequency of the LITTLE cluster and assign it onto appropriate 
cluster. After assigning tasks, we adjust the target frequency by 
DVFS to satisfy capacity constraint. During this procedure, 
frequency constraint can be violated. To solve this problem, we 
migrate entire or some portion of tasks to the other cluster. 

We generated feasible task sets and tested how power 
consumption can be reduced when we use VFS-Hetero-Split. 
We showed that our algorithm can reduce power consumption 
up to 48% comparing that when the tasks is running with the 
maximum frequency, without losing any feasibility. 

VI. RELATED WORKS 
The optimization of HMP in real-time system is based on the 

different characteristics between architecture big and LITTLE 
such as performance and power efficiency. However, the study 
covering optimal real-time scheduling on two-type 
heterogeneous multicore platform suggested the fully-migrative 
scheduling framework [1]. By combining Hetero-Fair and 
Hetero-Split, they developed the first optimal two-type 
heterogeneous multicore scheduling algorithm. However, they 
have some limitation that they did not consider DVFS widely 
used in practice.  Some studies tried to model heterogeneous 
multicore platform by combining two cluster of CPU [8]. 
However, since the type of two cluster is same, it is reasonable 
to call it as asymmetric multicore instead of heterogeneous 
multicore. Previous study to consider both energy and feasibility 
at the same time successfully modeled on ARM big.LITTLE 
heterogeneous multicore platform [6]. However, since it 
implemented the models as only for cluster switching, not HMP, 
it is less power efficient in terms of energy consumption.  
Another study covering power efficiency and CPU governing in 
heterogeneous multicore platform verified the power 

consumption model of the AP [7]. Based on the power 
consumption model, they suggested Medusa which is a new 
philosophy to control CPU frequency and they found Medusa 
can reduce the power consumption without any penalty of the 
performance. But, their assumption that the feasibility is always 
guaranteed is not fairly practical. Also, since the power curve of 
Samsung Exynos 5410 that they used is totally different from 
that of current HMP architectures such as Samsung Exynos 7420, 
it is becoming less useful as time goes on. 
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